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When each site of a spatially extended excitable medium is independently driven by a Poisson stimulus with
rate h, the interplay between creation and annihilation of excitable waves leads to an average activity F. It has
recently been suggested that in the low-stimulus regime �h�0� the response function F�h� of hypercubic
deterministic systems behaves as a power law, F�hm. Moreover, the response exponent m has been predicted
to depend only on the dimensionality d of the lattice, m=1 / �1+d� �T. Ohta and T. Yoshimura, Physica D 205,
189 �2005��. In order to test this prediction, we study the response function of excitable lattices modeled by
either coupled Morris-Lecar equations or Greenberg-Hastings cellular automata. We show that the prediction is
verified in our model systems for d=1, 2, and 3, provided that a minimum set of conditions is satisfied. Under
these conditions, the dynamic range—which measures the range of stimulus intensities that can be coded by the
network activity—increases with the dimensionality d of the network. The power law scenario breaks down,
however, if the system can exhibit self-sustained activity �spiral waves�. In this case, we recover a scenario that
is common to probabilistic excitable media: as a function of the conductance coupling G among the excitable
elements, the dynamic range is maximized precisely at the critical value Gc above which self-sustained activity
becomes stable. We discuss the implications of these results in the context of neural coding.
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I. INTRODUCTION

Sensory stimuli impinge continuously onto the peripheral
nervous system, where they are transduced into electrical
activity of sensory neurons. Understanding how those and
subsequent neurons encode and process stimulus information
remains a formidable challenge for neuroscience since the
pioneering work of Adrian �1�, and is the subject of ongoing
research �see, e.g., Ref. �2� for recent progress on olfaction�.

One of the most remarkable achievements of the nervous
systems of multicellular organisms is their large dynamic
range, i.e., their ability to cope with stimulus intensities
which vary by many orders of magnitude. Experimental evi-
dence in this direction is abundant, the simplest example
being the century-old psychophysical laws: the psychologi-
cal perception F of a given stimulus intensity h has been
shown to be a power law for weak stimuli, F�hm. This
behavior of the response curve F�h� is known as Stevens’
law, and the response exponent m is called Stevens’ exponent
in the psychophysical literature �3�. Microscopic �i.e., neural�
data also confirm this scenario: the activity of relay stages in
sensory processing also increases as a power law of the
stimulus intensities �e.g., glomeruli and mitral cells for olfac-
tion �4,5�, or ganglion cells of the retina �6,7��. In both cases
�psychophysical and neural�, the response exponents are
typically less than 1, which indicates �as we will see below�
a large dynamic range of the response curves.

That large dynamic ranges should be evolutionarily favor-
able is generally agreed upon, owing to the fact that natural
stimuli indeed span several decades of intensity. However,

experimental results show that the dynamic range of the very
first sensory neurons which perform the initial transduction
is usually small, their firing rate varying essentially linearly
with stimulus intensity �see, e.g., Ref. �8� for the case of
olfaction�. Therefore, what remains to be explained is how
those apparently conflicting results can be reconciled. In
other words, how can large dynamic ranges be implemented
by neurons?

Two main mechanisms have long been proposed. The first
one is adaptation, by which neurons manage to adjust their
range of operation according to the statistics of the ambient
stimulus �9–13�. The second one is the intrinsic variation of
firing thresholds among a population of sensory neurons,
which would allow them to cover a wide range of stimuli �in
spite of each of them having a small range� �14�. Both
mechanisms can indeed contribute to an enhancement of dy-
namic range. However, note that neither adaptation nor
threshold variation requires interactions among neurons to
work, insofar as adaptation has been understood as a dy-
namical process which neurons undergo individually and the
firing threshold of a sensory neuron in principle does not
depend on the activity of other sensory neurons. Therefore, if
these were the only mechanisms responsible for enhance-
ment of sensitivity and dynamic range, there should be no
significant change in those properties if lateral connections
among neurons were blocked.

Experimental data, however, suggest otherwise. Deans
et al. �6� have measured the response function �firing rate vs
light intensity� of retinal ganglion cells of mice. For wild-
type mice, they found a class of cells that responded with
large dynamic range. When the same experiment was re-
peated with connexin36 knockout mice �i.e., mice that lack
electrical synapses�, they found that both sensitivity and dy-
namic range were significantly reduced. This suggests a third
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mechanism for dynamic range enhancement, based on the
interaction among neurons.

This third mechanism is the subject of the present contri-
bution. Previous work has revealed that, when excitable neu-
rons are coupled �via chemical or electrical synapses�, the
response function of the resulting excitable medium indeed
has much enhanced sensitivity and dynamic range �7,15–21�,
as compared to those of isolated neurons. The underlying
mechanism relies on very general properties of excitable me-
dia: incoming stimuli generate excitable waves which will
disappear �due to the nonlinearity of their dynamics� upon
collision with one another and/or with the system bound-
aries. For weak stimuli, waves are rare and can propagate a
long way before annihilation, therefore amplification is large
�as compared with what would be observed for uncoupled
neurons�; for strong stimuli, waves contribute little to the
overall network activity �since most neurons are being exter-
nally driven�, therefore amplification is small. As a result, the
medium as a whole has much larger sensitivity and enhanced
dynamic range as compared to those of its building blocks
�7,15–21�.

The above reasoning has been tested and confirmed in a
variety of models. In Refs. �18–21� the coupling among ex-
citable elements was probabilistic �say, via a transmission
rate ��. In such a scenario, low-stimulus amplification as
described above occurs via stochastic excitable waves,
whose �finite� lifetimes are essentially proportional to � �for
small ��. The dynamic range then initially increases with
increasing �, up to a critical value �=�c. where the system
undergoes a nonequilibrium phase transition. Above �c self-
sustained activity becomes stable �i.e., small fluctuations can
lead to nonzero density of active sites even in the absence of
external stimuli�. This hinders the coding of weak stimuli
�just as a whisper cannot be heard in a sound system domi-
nated by audio feedback�, a problem that only worsens if the
coupling is further increased. The dynamic range then de-
creases above �c and one concludes that the maximum dy-
namic range is obtained precisely at the phase transition �18�.

Due to their probabilistic nature, the above cited systems
were cast in a framework of stochastic lattice models, from
which useful insights could be obtained by applying mean
field approximations and relying on well-known results of
the statistical physics of nonequilibrium phase transitions.
For instance, the response exponent m at criticality was
shown to be a critical exponent �18–21� whose value has
been known for over two decades �22�. This should be con-
trasted with the models employed in Refs. �15–17�, where
the coupling among excitable elements was deterministic. In
these papers, the models were such that no self-sustained
activity was observed for vanishing stimulus rates. Besides,
even if a transition to the self-sustained regime occurred, the
standard results from statistical physics would not be easily
applicable due to the deterministic nature of the excitable
waves.

In this context, our aim here is to fill two gaps: first, we
verify the existence of power law responses in deterministic
excitable media without self-sustained activity; second, we
probe the robustness of these power laws. To accomplish the
first goal, we have chosen to simulate hypercubic excitable
media. This allowed us to test a theoretical prediction which

has recently been proposed �based on scaling arguments� for
the dependence of the response exponent m on the dimen-
sionality d �23�. Moreover, it reveals important differences
�regarding the dependence of m on d� with systems where
coupling is probabilistic �as recently studied �21��. To ac-
complish the second goal, we employed the same model to
show that, with a change in one of its parameters, self-
sustained activity can occur, thus setting limits on the valid-
ity of the theoretical prediction. As it turns out, this last result
puts the deterministic and probabilistic cases in a similar
state of affairs, where the dynamic range is maximized pre-
cisely at the transition to self-sustained activity.

This paper is organized as follows. In Sec. II, the two
models employed are described. The response functions in
the absence and presence of self-sustained activity are ana-
lyzed in Secs. III A and III B, respectively. From these re-
sponse functions we obtain the dynamic range, which is dealt
with in Sec. IV. Our conclusions are summarized in Sec. V.

II. MODELS

In our simulations, we make use of a lattice in which each
excitable site i is governed by the Morris-Lecar �ML� equa-
tions �24,25�

CmV̇i = − Ii
ion�Vi,wi� + Ii

syn�Vi,�Vj�� + Ii
stim�t� , �1�

ẇi = ��w��Vi� − wi�cosh�Vi − 10

29
	 , �2�

Ii
ion�Vi,wi� = GCamCa�Vi��Vi − ECa�

+ GKwi�Vi − EK� + Gm�Vi − Vrest� , �3�

mCa�Vi� = 0.5
1 + tanh�Vi + 1

15
	� , �4�

w��Vi� = 0.5
1 + tanh�Vi − 10

14.5
	� , �5�

where the membrane capacitance per unit area is Cm
=1 �F /cm2, membrane voltages Vi are measured in mV,
current densities in �A /cm2, �=1 /3 ms−1, and maximal
conductances for calcium, potassium, and passive membrane
leakage are respectively GCa=1 mS /cm2, GK=2 mS /cm2,
and Gm=0.5 mS /cm2. The corresponding reversal potentials
are ECa=100 mV, EK=−70 mV, and Vrest=−35 mV. Note
that the gating variable for calcium mCa is assumed to be
always in equilibrium, while w �which gates potassium cur-
rents� obeys a first-order dynamics �25� �both are dimension-
less�. All times are expressed in milliseconds.

Even though the ML equations were developed originally
to describe the membrane potential of the barnacle muscle
fiber, our aim here is not to model any specific biological
tissue in particular, but rather to shed light on the influence
of the network topology on its response properties, particu-
larly the dynamic range. Here we study hypercubic lattices
with dimensionality d, restricting ourselves to the simplest
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case of electrical coupling, for which the synaptic currents
are given by Ohm’s law,

Ii
syn�Vi,�Vj�� = �

j

2d

Gij�Vj − Vi� , �6�

where j runs over the first neighbors of i. The conductance
Gij between sites i and j could account for gap junctions
�e.g., as observed in axoaxonal contacts in the hippocampus
�26,27� or dendrodendritic contacts of mitral cells in the ol-
factory glomeruli �28�� or ephaptic interactions �as modeled
by Bokil et al. to occur in the olfactory nerve �29��.

The external current Ii
stim�t� accounts for the stimuli arriv-

ing in the network, which we model as a Poisson process.
Each neuron independently receives current pulses at con-
stant rate h �measured in ms−1�. Each pulse has duration D
and intensity I0 �so that for h�D−1 the regime of a continu-
ous external current is approached�.

To test the robustness of the results and to allow for larger
system sizes, we also simulate lattices in which each excit-
able element is modeled by the n-state deterministic
Greenberg-Hastings cellular automaton �GHCA� �30�. In this
case, each site i at discrete time t can be in states
xi�t�� �0,1 ,2 , . . . ,n−1�, where x=0 and 1 represent a qui-
escent �polarized� and spiking �depolarized� neuron, respec-
tively, whereas for 2�x�n−1 the site is refractory. The
dynamical rules are cyclical: if xi�t��1, then xi�t+1�
= �xi�t�+1� mod n, i.e., after a spike the model neuron deter-
ministically undergoes n−2 refractory steps before returning
to the x=0 quiescent state. If xi�t�=0, then xi�t+1�=1 if at
least one of its 2d nearest neighbors is spiking at time t or if
an external stimulus arrives at site i �xi�t+1�=0 otherwise�.
The Poissonian external stimulus occurs independently at
each site with probability P=1−exp�−h	�, where 	=1 ms is
the time step adopted in this case.

For both models, i=1, . . . ,N, where N=Ld is the total
number of excitable elements in a network of linear size L.

III. RESPONSE OF HYPERCUBIC
EXCITABLE MEDIA

Let F be the mean firing rate, defined as the total number
of spikes in an interval Tmax, divided by the number N
of neurons and by Tmax. To avoid undersampling in
the low-stimulus regime, we have chosen Tmax
=max�n̄ / �hN� ,100 ms�, where n̄ is the approximate mean
number of attempts to initiate an excitable wave �we have
typically employed n̄=25�. We define the response function
�or transfer function� of the network to the external stimulus
as F�h�. In the following, we make use of a uniform coupling
Gij =G and study how the response function changes with G.

A. Power laws

Figure 1 shows the results for a one-dimensional ML lat-
tice with D=0.3 ms and I0=15 �A /cm2. As G increases,
three regimes are observed in the response of the network.
For weak coupling �left panel in Fig. 1�a�, triangles in Fig.
1�b��, synaptic currents from spiking neighbors are not
strong enough to generate spikes, so each stimulus event

generates one spike, and the response function increases lin-
early �up to saturation at Fmax, which is essentially the in-
verse of the refractory period�. Above a certain value G1�
0.14 mS /cm2, however, the conductance is strong enough
to allow the propagation of excitable waves. In this regime
�middle panel in Fig. 1�a�, squares in Fig. 1�b��, which is
observed up to a second transition at G1�0.24 mS /cm2,
excitable waves are created by external stimuli and annihi-
lated by one another and by the boundaries �open boundary
conditions have been employed throughout this paper�.
Above G1�, current leakage to neighbors is so large that it
typically prevents neurons from spiking upon the incidence
of a single stimulus pulse. What we observe �right panel of
Fig. 1�a�� is that a neuron will fire only if it is at the bound-
ary �in which case it has fewer neighbors and consequently
less leakage� or if two stimulus pulses happen to arrive
nearly consecutively �in a mimicry of temporal summation�.
Note that in the three panels in Fig. 1�a� the seed of the
pseudo-random-number generator is the same, so the spikes
in the left panel coincide with stimulus pulses. In the right
panel of Fig. 1�a�, however, only the stimulus pulses that
happened to fall right at the borders generated waves �all
other visible perturbations are subthreshold, not spikes�. In
this regime, inevitably poor statistics ensues, except for large
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FIG. 1. �Color online� �a� Membrane potentials of 100 ML neu-
rons versus time with h=10−2 ms−1 for G=0.1 �left panel�, 0.2
�middle panel�, and 0.3 mS /cm2 �right panel�. The seed of the
pseudo-random-number generator is the same for the three values
of G. �b� Response function for a one-dimensional lattice of L
=1000 ML excitable elements. Symbols �bars� represent averages
�standard deviations� over 10 runs. Solid lines are power laws dis-
cussed in the text.
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stimulus rates, as reflected in the G=0.3 �circles� curve in
Fig. 1�b�. Note, however, that if a spike is finally produced,
propagation of an excitable wave does occur, which explains
why the response in this case is larger than for G
G1�.

The response curves in Fig. 1�b� clearly show power laws
F�hm in the low-stimulus regime. For G
G1�, the response
is linear �m=1� and can be easily explained: for each stimu-
lus pulse, a small number of spikes is generated �typically
one� and excitable waves do not interact. For G1�
G
G1�,
however, excitable waves are created in randomly located
points and annihilate upon encountering one another. To un-
derstand how this nonlinear interaction leads to a power law
in the dependence of F on h, Ohta and Yoshimura have re-
cently proposed an elegant scaling reasoning �23�. In the
scaling regime, F should depend on a dimensionless variable
A. Since h is small, the characteristic times for wave creation
and wave annihilation are much smaller than the time of free
propagation. Therefore, the only relevant parameters are the
width l of an excitation, the wave speed c, and the rate h.
Recalling that h is measured in events per unit time per site
�thus having dimension of t−1 L−d�, we obtain A=hc−1l1+d. If
we now assume a scaling relation F�Am, the exponent m
can be obtained by noting that in the low-stimulus regime
waves are sparsely distributed and the dependence of F on l
must be linear; hence m=1 / �1+d� �23�.

As shown in Fig. 1�b�, this prediction is confirmed in our
one-dimensional ML simulations in the parameter region
where excitable waves propagate ballistically. Particularly
for d=1, the scaling relation F�h1/2 had already been con-
clusively confirmed for the GHCA �in both simulations
�7,15� and analytical calculations �7�� and coupled map lat-
tices �16�. However, for more realistic models, it was only
approximately verified for a chain of Hodgkin-Huxley model
neurons �15� and a reaction-diffusion partial differential
equation �23�, with exponents around m0.4. In Fig. 1�b�
we fill this gap with an agreement over more than two de-
cades.

In two dimensions, simulations have been carried out with
stronger stimulus pulses �D=0.45 ms and I0=150 �A /cm2�
to prevent excessive leakage owing to the larger number of
neighbors. The same scenario has been observed. For small
G, each stimulus pulse generates at most an evanescent wave
with a radius of a few neighbors �left panel of Fig. 2�a��. For
G�G2�0.225 mS /cm2, however, generated waves can
propagate ballistically with their radii increasing indefinitely.
As shown in the middle panel of Fig. 2�a�, annihilation in
this case is more complicated than for d=1, for now collid-
ing waves may have different radii and their surfaces merge
to form irregular-shaped excitations �16,17,27�. This regime
breaks down for G=G2�0.725 mS /cm2, above which cur-
rent leakage is again too strong and spikes are generated with
at least two nearly consecutive stimulus pulses or at the
boundaries. Note that several waves that appear in the
middle panel of Fig. 2�a� are absent in the right panel, as
exemplified by the arrows �as in Fig. 1, the seed is the same
for the three panels�. Several waves in the right panel of Fig.
2�a� have been created at the borders �and propagate faster
than those of the middle panel because G is larger�.

As for the response functions, Fig. 2�b� shows that Ohta
and Yoshimura’s exponent m=1 /3 for d=2 agrees �for two

decades� with simulations for G=0.5 mS /cm2 �and this
holds true in the whole interval G2�
G
G2��. Interestingly,
another exponent �not predicted originally �23�� arises for
G�G2�: in this regime, waves typically require two nearly
consecutive stimulus pulses to be created, and for weak
stimuli this occurs approximately at a rate h��h2. But once
they are created, Ohta and Yoshimura’s reasoning is still
valid, now with the dimensionless variable rewritten as A
=h�c−1l1+d. We therefore obtain the exponent m=2 / �1+d�,
which is reasonably confirmed for G=0.9 mS /cm2 �circles�
in Fig. 2�b�. Looking back to the analogous situation for the
one-dimensional case, the circles in Fig. 1�b� are compatible
with an exponent m=1 �the extremely poor statistics not-
withstanding�. Whether further increasing G leads to other
transitions �inducing the necessity of, say, k�2 nearly con-
secutive pulses to generate a wave� and new exponents �pre-
sumably m=k / �1+d�� is a question beyond the scope of this
work, but perhaps worth pursuing. It is important to point
out, however, that these transitions may have limited biologi-
cal applicability: chemical synapses �which do not suffer
from leakage� are not included in this model, yet abound in
the nervous system.
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FIG. 2. �Color online� �a� Snapshots of networks with 50
�50 ML neurons, with depolarized �spiking� membrane potentials
coded as white. From left to right, G=0.1, 0.5, and 0.9 mS /cm2,
with h=2�10−3 ms−1 and t=3.0 ms �3.5 ms� for top �bottom�
row. The seed of the pseudo-random-number generator is the same
for the three values of G. �b� Response function for a network of
200�200 ML excitable elements. Symbols �bars� represent aver-
ages �standard deviations� over ten runs. Solid lines are power laws
discussed in the text.
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In order to test Ohta and Yoshimura’s prediction in three
dimensions, we have performed simulations of the GHCA
model. With the rules defined in Sec. II, an incoming stimu-
lus pulse generates an excitable wave which propagates bal-
listically until annihilation with another wave or with the
system borders �17,26,27�, precisely as observed in the inter-
mediate region G�
G
G� for the ML equations. The mo-
tivation for switching to a simpler model is that it allowed us
to simulate much larger networks than would be feasible
with the ML equations. As shown in the response functions
of Fig. 3, finite-size effects are strong. However, for a net-
work of N=1603 automata �a system size beyond our com-
putational resources for the ML equations�, it is already pos-
sible to verify the power law F�h1/4 for more than two
decades. Incidentally, we note that the response function of
two-dimensional GHCA networks has been studied in Ref.
�17�, but the power law has been missed. The inset of Fig. 3
now confirms the predicted exponent.

B. Spiral waves

What we have described so far suggests that the response
exponent is indeed m=1 / �1+d� whenever the following two
conditions are satisfied: �A� every quiescent neuron �i.e., not
only those at the borders� spikes upon the incidence of a
single stimulus pulse and �B� this spike creates a determin-
istic excitable wave which will be annihilated at the borders
or upon encountering other wave�s�. In the examples shown
in Figs. 1 and 2, these two conditions are simultaneously
satisfied only for G�
G
G�. For G
G�, condition A is
satisfied, but B is not; for G�G�, condition B is satisfied,
but A is not.

The above scenario, however, is not general. As has been
known for many decades, excitable media can exhibit self-
sustained activity in the form of spiral or scroll waves, a
topic that has received much attention due to its relevance in
different scientific branches such as cardiology �31,32�, cy-
tology �33�, physics �34�, chemistry �35,36�, and neuro-

science �37�, among others. In Fig. 2 the parameters of the
ML system were such that spiral waves were not seen in any
simulation. With a change in one of the parameters, however,
spiral waves may appear, even in a homogeneous lattice. As
shown in the right panel of Fig. 4�a�, this is the case for �
=0.4 ms−1 and G=0.35 mS /cm2 �all other parameters re-
maining the same�, for instance. In this system, spiral waves
emerge �see arrow in the right panel of Fig. 4�a�� because of
the local inhomogeneities created by the stochastic input �38�
and, once established, they typically resist being destroyed
by the same stochastic input �even though their shape is con-
tinuously perturbed by the Poisson pulses�.

With this new phenomenon at play, how does the scenario
evolve as the coupling G changes? For low G �say, G
G2��,
the overall behavior of the system is the same as that of Fig.
2, i.e., a stimulus-induced spike at one site does not propa-
gate too far �compare the left panels of Figs. 2�a� and 4�a��.
Correspondingly, the response function is linear. If G is in-
creased, a transition occurs which allows the wave radii to
increase indefinitely �Fig. 2�a� and Fig. 4�a�, middle panels�.

100

10-1

10-2

10-3

10110010-110-210-310-410-510-610-7

F
(k

H
z)

h (ms-1)

d = 3

L=10

L=20

L=40
L=80

L=160

∝ h1/4

100

10-1

10-2

10110-110-310-510-7

d = 2

∝ h1/3

FIG. 3. Response curves of the GHCA model in d=3 for in-
creasing system size �n=3�. Inset: GHCA response function for d
=2 �L=2744, averages over five runs�. Dashed lines shows the re-
sponse exponent m=1 / �1+d� for both cases.

1

0.5

0.2

0.1
10010-110-210-3

F
(k

H
z)

h (ms-1)

(b)

90%

10%

Fmax

F0

∆ = 15.3 dB

h0.1 h0.9

G = 0.35 mS/cm2

G = 0.25 mS/cm2

G = 0.15 mS/cm2

(a)

G

FIG. 4. �Color online� Spiral waves with �=0.4 ms−1. �a� Snap-
shots of networks with 50�50 ML neurons, with depolarized
�spiking� membrane potentials coded as white. From left to right,
G=0.15, 0.25, and 0.35 mS /cm2, with h=4�10−3 ms−1 and t
=20 ms �21 ms� for top �bottom� row. The seed of the pseudo-
random-number generator is the same for the three values of G. �b�
Response function for a network of 200�200 ML excitable ele-
ments. Symbols represent averages over five runs �standard devia-
tions are smaller than symbol size�. Firing rates were measured over
150 ms after a 50 ms transient. Horizontal and vertical lines illus-
trate the relevant quantities for calculating the dynamic range  �see
Eq. �7� and text for details�.
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However, contrary to what was previously observed, this dy-
namic regime is no longer valid in a broad range of G values.
As G is further increased, spiral waves quickly emerge. As
for the second transition previously observed at G2�, it now
essentially loses meaning, for as soon as the waves are
created—no matter whether by one or two incoming stimuli,
or at the boundaries—the conditions are set for the spiral
waves to dominate the network.

Regarding Ohta and Yoshimura’s conjecture in this sce-
nario, the response function near the transition to self-
sustained activity suffers from strong statistical fluctuations,
as expected �see solid squares in the inset of Fig. 5�d��. It
seems compatible with a power law with exponent m=1 /3,
but for less than a decade only �note that even the self-
sustained activity suffers from finite-size effects for low
enough stimulus rate—see pentagons in the inset of Fig.
5�d��. It is at present unclear whether larger system sizes or
longer stimulus times would confirm the power law at the
transition.

The drastic consequences of this self-sustained activity
for the response curve are shown in Fig. 4�b�: the weak-
stimulus response no longer decreases as a power law for
decreasing h, but reaches instead a value F0 which corre-
sponds to the average firing rate when the lattice is domi-
nated by spiral waves. To obtain a reasonable estimate of F0,
we simulated the following protocol: 150�150 networks
were stimulated during a period Tstim=100 ms with a con-
stant rate h=4�10−3 ms−1. The stimulus was then switched
off �h=0� and the mean activity of the network F0 was mea-
sured after a transient Ttrans=900 ms. Figure 5�c� shows how
F0 depends on G. A transition is clearly seen near G

0.275 mS /cm2, above �below� which F0�0 �F0=0�. In
the inset of Fig. 5�c� we also show the probability p that
spiral waves survive after the transient, which was estimated
by dividing the number of runs in which spiral waves sur-
vived by the total number of runs. The sharpness of the p�G�
curve also suggests a transition to a regime where self-
sustained activity is stable.

This second scenario appears to be more general than the
one described in Sec. III A. We have simulated networks in
which each element was modeled by the Hodgkin-Huxley
equations �39� with standard parameters �40� and have ob-
tained spiral waves. Moreover, one of the most studied
causes of spiral wave creation is disorder and noise in the
excitable dynamics �41–43�, which are absent from the
present study. We have nonetheless tested some ML net-
works where � was distributed around 1 /3 ms−1 with some
variance, and have again obtained spiral waves. It is impor-
tant to remark that, for the purposes of the present study, it is
not enough that an excitable medium be able to sustain spiral
waves in the absence of stimulus, say, for a given initial
condition. The question is whether the Poisson stimulus is
able to create spiral waves and, at the same time, allow them
to survive. Consider, for instance, the limit of very weak
stimuli �h→0�. In this regime spiral waves hardly emerge
�even for �=0.4 ms−1� because fluctuations are not suffi-
ciently strong �see, e.g., the open pentagons in the inset of
Fig. 5�d��. At the other extreme, a large value of h can easily
provide the necessary fluctuations, but then the created spiral
waves will be statistically overshadowed by the very stimuli
that generated them. Overall, the probability of self-sustained
activity coexisting with the Poisson stimulus depends not
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FIG. 5. �Color online� Left �right� column: absence �emergence� of spiral waves. Dynamic range versus coupling conductance for �
=1 /3 ms−1 ��a� and �b�� and �=0.4 ms−1 �d�. Triangles denote G
G� and squares denote G�
G
G�. Circles denote G�G� in the
absence of self-sustained activity �b�, whereas pentagons denote the spiral wave regime �d�. In �c�, the self-sustained activity F0 in the
absence of stimulus is plotted against G for fixed �=0.4 ms−1. Inset of �c�: estimated probability p of spiral wave survival versus G �see text
for details�. Inset of �d�: response functions with �=0.4 ms−1 for G=0.25 �solid squares� and 0.275 mS /cm2 �open pentagons�. System
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only on the model parameters �in this case, � or G� but also
on the system size �N�, stimulus rate �h�, and duration �Tmax�.
A more detailed study of this dependence would be wel-
come.

IV. DYNAMIC RANGE

We can now return to the quantity that originally moti-
vated this study. The dynamic range  of a response curve
F�h� is formally defined as �44�

 = 10 log10�h0.9

h0.1
	 , �7�

where h0.1 �h0.9� is the stimulus intensity such that the differ-
ence F−F0 is 10% �90%� of the maximal response interval
Fmax−F0. As depicted in Fig. 4�b�,  measures �in decibels�
the range of stimulus intensities that can be “appropriately”
coded by the mean firing rate of the system, discarding in-
tensities whose corresponding responses are too close either
to saturation �h�h0.9� or to baseline �h
h0.1�. This measure
of appropriateness is evidently arbitrary, but standard in the
biological literature and very useful, since it is a dimension-
less quantity that allows direct comparison with experimental
results.

Figure 5 shows the behavior of the dynamic range �esti-
mated numerically from the response curves� as a function of
the coupling conductance. For d=1 �Fig. 5�a��,  changes
very little for G
G1�, staying in the range of 16 dB �which is
comparable to experimental values of isolated olfactory sen-
sory neurons �8� and retinal ganglion cells of connexin36
knockout mice �6,7��. The transition near G1� seems abrupt,
after which the dynamic range becomes substantially larger:
the system attains �31 dB, an enhancement of about 100%,
which had also been previously obtained with a cellular au-
tomaton model �7�. This enhancement is clearly due to a
change in the response exponent m, which greatly amplifies
weak stimuli �recall the squares in Fig. 1�b��. For G�G1� the
dynamic range is reduced, once more because of the change
in the weak-stimulus sensitivity �recall the circles in Fig.
1�b��. It is important to remark that the poor statistics in Fig.
1�b� do not compromise the accuracy of the measured dy-
namic range, since the strong fluctuations occur below the
sensitivity threshold h0.1.

For �=1 /3 ms−1, the results in d=2 are similar �see Fig.
5�b��. As G2� is approached from below, the transition is
somewhat smoother than for d=1. More importantly, since
the response exponent for G2�
G
G2� �m=1 /3� is smaller
than for the corresponding regime in d=1 �m=1 /2�, the
weak-stimulus amplification for d=2 is larger and so is the
dynamic range, which reaches �38 dB. The same trend in
the dependence of  on d is observed in the GHCA model:
with a fixed system size N=146, by varying the dimension-
ality, we obtain =31, 43, and 54 dB for d=1, 2, and 3,
respectively. Note that these values are comparable to those
obtained in the ML model �the differences in d=2 being
explained by finite-size effects, as extensively discussed in
Ref. �17��.

This picture changes qualitatively when spiral waves
come into play ��=0.4 ms−1, rightmost column of Fig. 5�.

For G
G2� the dynamic range increases monotonically with
G, reaching a maximum near G2�. Increasing G further, how-
ever, leads to the onset of spiral waves, and the nonzero
baseline activity F0 prevents the appropriate coding of weak
stimuli. This is clearly seen in Fig. 4�b� �pentagons�: an ob-
server would have much difficulty in distinguishing the re-
sponses of any two points below h=10−3 ms−1, which leads
to a drastic decrease in dynamic range. Moreover this prob-
lem becomes more and more severe as G is further in-
creased: since F0 increases with G for G�G2� �see Fig. 5�c��,
the dynamic range decreases with increasing G. Therefore, if
a deterministic excitable medium supports spiral waves in
some parameter region, its dynamic range will be maximum
precisely at the transition where they become stable.

V. CONCLUDING REMARKS

We have simulated hypercubic networks of excitable
elements modeled by the Morris-Lecar equations and
Greenberg-Hastings cellular automata. We have studied how
the collective response F of the network to a Poisson stimu-
lus with rate h changes with the coupling G and the dimen-
sionality d. Two scenarios have been observed. In the first
one, a broad range of G values exists such that excitable
waves are created and thereafter propagate ballistically, be-
ing annihilated upon encountering one another or the system
boundaries. In this regime, the response function F�h ;d� is
shown to be a power law F�hm. Furthermore, we have con-
firmed that, if waves are created upon the incidence of a
single stimulus pulse, the response exponent agrees with the
theoretical prediction of Ohta and Yoshimura, m=1 / �1+d�
�23�. We have argued that, in a regime where wave creation
requires the incidence of two nearly consecutive stimuli, an
exponent m=2 / �1+d� should be expected and is confirmed
by our ML simulations in d=2 �also for a broad range of G
values�.

If a system is such that the exponent m=1 / �1+d� holds,
the dynamic range increases with the dimensionality d �as
confirmed here for d=1 and 2 in the ML model and d=1, 2,
and 3 for the GHCA model�. This is in stark contrast with
probabilistic excitable systems, where the maximum dy-
namic range attained at a given dimension d is a decreasing
function of d. This happens because in that case m corre-
sponds to the critical exponent 	h

−1 �apparently belonging to
the directed percolation universality class �21��, and 	h

−1 in-
creases with d.

In this context, one should not be misled by the apparent
paradox posed by the assumption that a deterministic system
is “just” a particular case of a probabilistic one. Consider, for
instance, a probabilistic version of the d-dimensional GHCA
in which a stimulus would be transmitted to its quiescent
neighbors with probability q: the function �q� has qualita-
tively the same shape as that of Fig. 5�d� and the maximum
value of  attained at given d is a decreasing function of d
�21�. Why then for q=1 do we have an increasing �d�?
Remember that the main condition for the exponent m
=1 / �1+d� to hold is the absence of self-sustained activity. In
a probabilistic system, this requires not only that q is pre-
cisely 1, but also that the initial conditions are appropriately
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set �17,27�. For q infinitesimally smaller than 1 or q=1 with
random initial conditions, self-sustained activity ensues in
the probabilistic GHCA. Therefore, in this particular model
the result m=1 / �1+d� is obtained only under very artificial
circumstances, at the edge of the parameter space and only
for restricted initial conditions. In contrast, for the determin-
istic ML lattices studied here, the exponent holds in a broad
region of the parameter space for any initial condition.

A substantially different scenario has been obtained with a
change in a single parameter of the ML model, for which
stable spiral waves were observed when the coupling was
increased above a certain critical value �leading to a break-
down of Ohta and Yoshimura’s prediction�. Given the ubiq-
uity of spiral waves in studies of excitable media, this sce-
nario is likely to be more general than the one previously
described. In this case, a unifying picture emerges for both
deterministic and probabilistic excitable media: the dynamic
range in both cases is maximized at the critical value of
coupling above which self-sustained activity becomes stable.
Simulations of larger systems would be required to confirm
whether the response exponent is indeed m=1 / �1+d� pre-
cisely at the transition.

Put into a broader context, our results reinforce the idea
that optimal information processing near criticality, a topic
which has received much attention in recent decades �45�,
could have a bearing on the brain sciences. In fact, experi-
mental results that are consistent with the hypothesis of neu-
rons collectively operating near a critical regime have re-
cently appeared �46–49�, joined by theoretical efforts aimed
at understanding the computations themselves �18,50–52�, as
well as the homeostatic mechanisms that could maintain the
system at criticality �53,54�. These issues still pose remark-
able challenges for the years to come, which opens the pos-
sibility of new lines of research connecting physicists with
systems biology in general, and neuroscience in particular.
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